ESD-TR-88-164
|

Technical Report '

y

|

i
|

Implementing ‘Artificial Neural Networks

810]

in Integrated Circuitry:

A Design Pro%:osal for Back-Propagation ,5

S.L. Gilbert

18 November 1988 |

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lincoln Labor atory

LEXINGTON, MASSACHUSETTS

Prepared for the Départment of the Air Force

under Electronic Systems Diyision Contract F19628-85-C-0002.

Approved for public +lene; distribution unlimited.

The work reported in this document was performed at Lincoln Laboratory, a center
for research operated by Massachusetts Institute of Technology, with the support of
the Department of the Air Force under Contract F19628-85-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the contractor
and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the United States Government.

The ESD Public Affairs Office has reviewed this report, and it
is releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals. . .

This technical repert has been reviewed and is approved for publication.

FOR THE COMMANDER
fuoh &, Southadl

Hugh L. Southall, Lt. Col., USAF
Chief, ESD Lincoln Laboratory Project Office

a

Non-Liicoln Recipients .
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

IMPLEMENTING ARTIFICIAL NEURAL NETWORKS

IN INTEGRATED CIRCUITRY:

A DESIGN PROPOSAL FOR BACK-PROPAGATION*

S.L. GILBERT
Group 23

TECHNICAL REPORT 810

18 NOVEMBER 1988

Approved for public release; distribution unlimited.

*This report was a thesis submitted to the Department of Electrical Engineering and
Computer Science, MIT, on May 2, 1988 in partial fulfillment of the requirements for the
degree of Master of Science in Electrical Engineering.

LEXINGTON

MASSACHUSETTS

ABSTRACT

In an attempt to develop CMOS circuitry (both analog and digital) for the implementation
of artificial neural networks, the back-propagation learning algorithm was examined in
detail. Simulations were performed to determine the robustness of this algorithm to
anticipated implementation artifacts such as quantization and weight-range limitation.
Circuitry which computes with analog signals and digitally encoded weights was then
designed to implement the algorithm within the tolerances determined by the simulations.

The architecture of an alternative, fully digital design was also defined and its performance
compared with that of both the analog/digital design and a fully analog design based on
circuitry that has been proposed in the literature.

iii

TABLE OF CONTENTS

Abstract
List of Illustrations
List of Tables

INTRODUCTION
WHAT IS BACK-PROPAGATION USED FOR?

THEORY OF BACK-PROPAGATION ALGORITHM

A. The Generalized Delta Rule
B. Vector Space Interpretation

ARCHITECTURAL OVERVIEW OF DESIGN

SIMULATIONS

A. Problem Definition

B. The Questions and Results
Quantized Representation
Range-Limited Learning
Fully Quantized Learning
Slope Approximation
Nonrandom Initialization
Simulation Conclusions

£ §0 o B

SPECIFIC SUB-CIRCUITS

A. Processor

1. Voltage-Driven MDACs

2. Current Mirror MDAC

3. Summary of MDAC Processors
B. Derivative Approximation
C. Weight Modification Circuitry

i1
vil
ix

15

19

25

25
27
27
33
34
37
40
4]

43

43
43
47
52
52
53

7. ALTERNATIVE DESIGN APPROACHES

A.

B.
C

Analog Designs
Digital Design
Alternative Algorithm

8. PERFORMANCE COMPARISON

A.

B.
C.
D

E.

Purely Analog Approach

Mixed Analog and Digital Approach

Digital Array Processor (Purely Digital) Approach
Summary

1. Area Efficiency

2. Ability to Initialize

3. Versatility

Conclusions

9. CONCLUSIONS AND FUTURE WORK

APPENDIX A — SIMULATION DETAILS

APPENDIX B — BIBLIOGRAPHY

vi

55

55
57
62

65

65
67
67
68
68
69
69
70

71

73

81

Figure

LIST OF ILLUSTRATIONS

Black-Box View of Back-Propagation Network

Classification Regions in 2-Dimensional Input Space

High Granularity Classification Regions

2-Layer Network Architecture

Logistic Activation Function

Activation Function Mapped into 2-Dimensional Input Space
Smple Op-Amp and Resistor Circuit

Block Architecture of Design

Classification Regions in Input Space for Simulated Problems
2-Dimensional Equivalent of 10-Dimensional Problem
2-Layer Network (2 Inputs, 2 Outputs, and 4 Hidden Nodes)
Derivative of Activation Function and Approximation
Comparison of Activation Function and Approximation
Block Diagram of Voltage-Driven MDAC Circuit

Weight Circuitry for Voltage-Driven MDAC

Block Diagram of Current-Driven Circuit

Weight Circuitry for Current-Driven MDAC

Block Diagram of 4-Quadrant MDAC

High-Resolution Current Mirror Weight Circuitry

Simple Circuit to Approximate Derivative Function

Basic Fully Analog Circuit

Basic Architecture of Fully Digital Array Processor
Configuration for Forward-Propagation of Activation Signals
Configuration for Back-Propagation of Error Signals

Configuration for Concurrent Weight Modification

vii

Page

10
16
20
22
26
28
29
37
38

45
46
48
50
51
52
55
56
58
60
61

Figure
No.
A-1
A-2
A-3
A-4
A-5
A-6

Typical Weight Pattern for Circle Problem

Typical Weight Pattern for Corner Problem
Response of Node 0 for the Circle Problem
Response of Node | for the Circle Problem
Response of Node 0 for the Corner Problem

Response of Node 1 for the Corner Problem

viii

Page
74
76
77
77
78
78

Table
No.

3-]
5-1(a)

5-1(b)

5-1(c)

5-2(a)
5-2(b)
5-2(c)
5-3(a)

5-3(b)

5-3(c)

8-2

LIST OF TABLES

Summary of Back-Propagation Derivation

Percentage Reclassification After Quantization for
“Circle” Problem

Percentage Reclassification After Quantization for
“Corner” Problem

Percentage Reclassification After Quantization for the
*“10-Dimensional” Problem

Quantized Learning with the “Circle” Problem
Quantized Learning with the “Corner” Problem
Quantized Learning with the “10-Dimensional” Problem

Quantized Learning with Slope Approximation
(“Circle” Problem)

Quantized Learning with Slope Approximation
(“Corner” Problem)

Quantized Learning with Slope Approximation
(“10-Dimensional” Problem)

Summary of Cell Area Requirements

Maximum Network Size in Nodes/Layer (1 X I cm Die)

X

Page
14

30

31

32
35
35
36

38

39

39
68
69

IMPLEMENTING ARTIFICIAL NEURAL NETWORKS
IN INTEGRATED CIRCUITRY:
A DESIGN PROPOSAL FOR BACK-PROPAGATION

1. INTRODUCTION

Recently, a great deal of work has been done in an attempt to define computational archi-
tectures that capture some of the properties of biological neural systems. This work is motivated
by the hope that these artificial systems will also demonstrate some of the properties of the bio-
logical systems including learning, massive parallelism, and fault tolerance. Although many of the
results look promising, most of this work has been done by implementing software routines on
conventional digital computers that model these highly distributed architectures. As a result, the
simulations are often extremely slow and researchers are often limited in the size of the networks
that can be practically simulated. Although most researchers recognize that implementation in
custom hardware is an eventual goal, the progress toward this goal has been relatively slow.

One of the artificial neural learning algorithms that has been studied most intensively is the
back-propagation algorithm. This algorithm has been applied to problems in character recogni-
tion [Burr, 86], speech recognition [Burr, 86] [Huang, 87] [Lippmann, 87] [Peeling, 86], text-to-
speech processing [Sejnowski, 87], signal prediction [Lapedes, 87], protein structure analysis
[Qian, 88] [Levin, 88], and a variety of other difficult problems. All these applications, however,
have in common the fact that they have been implemented on conventional computers running
software simulators.

This project attempts to define an architecture and circuitry which can implement the back-
propagation algorithm in hardware that is specifically designed to take advantage of the distrib-
uted nature of artificial neural-network algorithms. First, the pertinent issues involved in back-
propagation are discussed, and a general architecture described that can be used to implement
the algorithm. Section 2 attempts to abstract the essential features of the problems to which
back-propagation is typically applied, and Section 3 presents the specifics of how the back-
propagation algorithm solves these problems. A specific architecture is defined in Section 4, and
the results of simulations that were performed to model this architecture are presented in Sec-
tion 5. Circuits with analog signaling and digital control that can be used to implement this
architecture are described in Section 6. Finally, in Sections 7 and 8, alternative methods of
implementing different portions of the architecture are presented and compared in terms of per-
formance, cost, and feasibility.

The goals of this report are to present the issues that are critical to the design of hardware
that implements the back-propagation algorithm, and to define a particular design which satisfies
these constraints. Additionally, a variety of implementation techniques that have been applied to
other artificial neural networks in the literature are discussed with respect to their relevance to
the implementation of the back-propagation algorithm.

2. WHAT IS BACK-PROPAGATION USED FOR?

“Artificial neural network” is a generic term that is used rather loosely to describe systems
that are characterized by a large number of relatively simple processors (neurons) that are inter-
connected to form a complex system. Unlike digital systems in which the processors are pro-
grammed to allow the system to perform a given task, in these systems it is the modification of
the interconnection of the processors which is used to program the system. The pattern of inter-
connection thus stores the information. In the sense that biological neural systems are also
thought to store information in a distributed fashion and not locally, artificial neural networks
are “biologically inspired.” This, however, is arguably where the biological inspiration ends for
systems like the back-propagation networks that will be described in this report. The significance
of such systems is thus not necessarily the biological inspiration so much as the fact that they
represent an approach to computation that is radically different from that of more conventional
digital systems.

There are a host of different designs that fall under the heading of artificial neural net-
works, but these designs can generally be characterized by the types of processors used, the way
in which these processors are interconnected, and the method used to program or “learn” the
interconnections pattern for a given task. In this context, the term back-propagation describes a
particular learning algorithm (also known as the generalized delta rule) but it also implies a spe-
cific type of network architecture and a processor of a given characteristic. The specific learning
algorithm was proposed by [Rumelhart, 86], but the general architecture and processor type is an
adaptation of the perceptron architecture that was proposed by [Rosenblatt, 62] and was itself
inspired by the work of McCulloch and Pitts in the 1940’s.

The detailed specifications of the architecture and processors will be discussed in Section 4,
but it is important to understand what these systems are expected to do before discussing how
they are expected to do it. For now, the network will be thought of as a black-box with n inputs
and m outputs as in Figure 2-1 (temporarily glossing over the fact that the box may actually be
full of a large number of highly interconnected processors). The inputs and outputs of the net-
work will be thought of as n- and m-dimensional vectors, respectively, with each component of
each vector being a signal that can take on any value in a specified range of values. In this
report, that range will generally be 0 to 1 unless otherwise noted. (This is a rather arbitrary
choice, and consistency in using this range is more important than the actual range itself.)

The back-propagation algorithm has been applied to a wide variety of diverse problems
including character recognition [Burr, 86], speech recognition [Burr, 86] [Huang, 87] [Lipp-
mann, 87] [Peeling, 86], text-to-speech processing [Sejnowski, 87], signal prediction [Lapedes, 87]
and a variety of other difficult problems. In the context of this research, however, it is most
important to abstract the fundamental properties of these problems and attempt to define the
essential characteristics of a back-propagation problem in an abstract context. I hope that this
will lead to a design which is useful for a wide variety of problems, instead of being useful for
only one particular application.

n INPUTS

T T T e

m OUTPUTS

Figure 2-1. Black-box view of back-propagation network.

Pattern association is one problem to which back-propagation networks are commonly ap-
plied [Sejnowski, 87] [Lapedes, 87]. In such a problem there is a set of input and output vector
pairs. The network is “programmed” with a particular weight pattern so that, when one of the
input vectors is applied, the network produces the corresponding output vector. The power of
such a network as a pattern associator is basically twofold. First of all, unlike conventional dig-
ital systems that are programmed by a person, a back-propagation network “learns” the correct
weight pattern from experience. As will be discussed in much greater detail in Section 3, the
weight pattern that programs the network is found by a training process that involves sequen-
tially applying the input vectors while at the same time supplying the network with the desired
output. At each pass through the training database, the network uses this information to modify
its weights until it learns the appropriate weight pattern. The second significant ability of a back-
propagation network when used as a pattern associator is its ability to generalize. That is, if a
noisy version of one of the input vectors is applied to the network, the network should still pro-
duce an output that is similar to the one corresponding to the noise-free input vector. If an input
vector is halfway between two training vectors, then the output should be a combination of the
outputs that correspond to those two training vectors.

Pattern association can be thought of abstractly by thinking of the network as being used to
define a smooth m-dimensional function in n-dimensional input space. The network is trained by
simply giving it information about the function at a certain limited number of points in n-space,
and the network is then used to interpolate values of the function at previously unencountered
points.

Another common application of back-propagation networks is pattern classification
[Burr, 86], [Huang, 87], [Rumelhart, 86]. Although this application has many things in common
with the pattern association application discussed above, there are significant differences between

the two. In the context of pattern classification, the input vector should be thought of as a point
in n-space. The objective is to define n-dimensional regions in n-space and have the network
determine which region the input “point” is in. The output of such a network would be a code
that indicates which region the input vector is in. Thus, the network is associating input vectors
with output codes instead of the more complicated output vectors in the pattern association
application. The important difference between a pattern classifier and a pattern associator is the
performance on input vectors that are halfway between two of the training vectors. Whereas the
response of the pattern associator would be interpreted as an interpolation between the two
trained outputs, the response of the pattern classifier would be to choose the best matched
output code.

This report will concentrate on back-propagation networks used as pattern classifiers.
Although it is important that any hardware implementation be capable of performing the actual
back-propagation algorithm for a variety of applications, pattern classification was chosen to
evaluate design trade-offs in this study and was simulated extensively in order to predict the per-
formance of the design. In these networks, there will be one output signal dedicated to each
“class” of inputs. When an input vector is applied to the network, all of the output signals will
be observed and the class corresponding to the largest network output will be considered the
network’s “classification” of that input. Although each component of the output vector will be
able to take on any value in the 0 to | range, the component associated with the correct class
will be trained to be 1, and all of the others will be trained to be 0.

Pattern classification problems can have varying levels of complexity and difficulty as mea-
sured by several parameters including connectedness, convexity, linear separability, and granular-
ity. All these metrics describe characteristics that are best understood when the pattern classifica-
tion problem is seen as defining regions in n-dimensional space and classifying input vectors
according to the region in which they are located. A class region is connected if it is possible to
move from any one point in the region to any other point in the region without ever leaving the
region. Regions that are not connected will be referred to as disjoint. Convexity is determined for
any region if no pair of points exists such that both points are in the region but a line segment
connecting the two points includes points that are not in that region. In the simple 2-dimensional
example shown in Figure 2-2, region A is convex and connected, region C is not connected, and
region B is connected but not convex.

Unlike convexity and connectedness, the other parameters are more characteristic of a group
of regions than any one particular region. Linear separability means that it is possible to separate
the regions with a straight line in the 2-dimensional case, and with a single hyperplane in higher
dimensional situations. Granularity is a qualitative metric which describes the fineness of detail
required to describe the regions as compared with the 0 to 1 scale. While regions A and B in
Figure 2-2 are not linearly separable, regions A and C are. The regions in Figure 2-2 exhibit low
granularity, while those in Figure 2-3 have high granularity.

7,

3

7.

102480-2

0 1>X

Figure 2-2. Classification regions in 2-dimensional input space.

Finally, there is a very significant distinction to be made between problems in which class
regions abut, as in Figure 2-2, and those in which there is unclassified space between adjacent
class regions as in Figure 2-3. The difference between these two types of problems is that in the
latter there are points in the domain space of the problem for which no class is defined; no one
cares how these points get classified. It should be intuitive that when class regions abut, there is
no room for error in defining the dividing line between the regions. When there is space between
the regions, however, the division can be made with less precision and still satisfy the constraints
of the problem. It will be shown in the simulation results that for back-propagation it does
require less precision to define the class regions for a problem with space between the class
regions.

\
I\ DODOD

\

N\ @0@0@0

€-08v20L

Figure 2-3. High granularity classification regions.

102480-4

3

THEORY OF BACK-PROPAGATION ALGORITHM

Section A below is a review of the work presented in [Rumelhart, 86]. It is presented here
because a detailed understanding of the back-propagation algorithm is essential for understanding
critical implementation issues that will be emphasized in the following discussion. Section B de-
scribes a conceptual framework that provides some insight into how a back-propagation network
functions. This insight will be valuable when discussing the results of the simulations that appear

in Section 4.

A. THE GENERALIZED DELTA RULE

As discussed earlier, the term “back-propagation,” although descriptive of the learning algo-
rithm used in these networks, also implies a specific network architecture and a particular proces-
sor with certain characteristics. As shown in Figure 3-1, the underlying network architecture is
composed of ordered layers of processors which are also referred to as “nodes” in the network.
Nodes in one particular layer £ (=1, 2, 3, ..., L) receive input signals from nodes in the pre-
vious layer (£ - 1), and pass their outputs on to the nodes in the next layer (£ + 1). As a nota-
tional convention, the output signal from node j in layer { is referred to as OJQ (following this
convention, the ith network input will be O%). The connections between processors in different
layers are characterized by strengths or weights.

NETWORK INPUTS

0 0 0 0 0
) o)
% 1 2 3 %

00

LAYER-1 NODES

i LAYER-2 NODES
§ 4

00

¢ ¢ ¢

Figure 3-1. 2-layer network architeciure.

The notation for the weight connecting node i in layer 2 - 1 to node j in layer { is WjQi. The
action of a processor is to accept as input the weighted sum of the output signals from the pre-
vious layer, and produce an output by passing this weighted sum through an activation or
transfer function such as the one shown in Figure 3-2. It should be noted in this figure that,
because the strength of a connection can be positive, negative, or zero, the weighted sum which is
the input to any node can be positive, negative, or zero.

1.00A T T
FINET)e —T1
-1 o e- (NET ")
8.00x10 -
-1
6.00x10 |
=
w
z
= -1
400x10
LOGISTIC
-1
2.00x10 .
-20
2.71x10 - -
5 3 1 1 3 5

NET

Figure 3-2. Logistic activation function.

Note that the superscript, which usually refers to exponentiation, will be used here to indi-
cate association with a particular layer; exponentiation will be indicated by a circumflex:

x squared = x 2
The output of the jth node in the 2nd layer = Of
A one-layer network would have one layer of nodes each with its own distinct weighted con-
nection to each of the network’s input signals. A two-layer network would have a second layer of
nodes that calculate their inputs as the weighted sum of the outputs of the first layer. Networks
of more than two layers are constructed by adding additional layers in this same fashion. In a

multi-layer network, all layers except for the output layer are called hidden layers, and nodes in
these layers are called hidden nodes.

Back-propagation defines an algorithm for modifying weights in order to solve a particular
problem. The algorithm starts with a network with random weights. An input vector is applied to

10

102480-5

the network while the outputs of the network are observed. The magnitude of the difference
between the actual output vector of the network and the desired output vector for that particular
input is used to generate an error function that is a measure of how well the network has been
trained. Back-propagation then specifies how to calculate the weight changes required to do a
gradient descent of this error function.

To be more precise, back-propagation defines an error function which measures the closeness
of the actual outputs of the network (OjL) and the target outputs (Tj) for all of the patterns in
the training data set:

1 .
E-= ZZ 7(Tj—0j'-) 2) (3-1)
P)

where p is used to index the patterns in the training set. For the sake of clarity, the subscript “p”
will only be made explicit when there is some ambiguity. In general, it should be assumed that
all variables represent signals that are specific to the particular input pattern.

The idea is to choose weight changes which will reduce this error. This effect is maximized
by selecting weight changes in the direction opposite to the gradient of this error function, thus
performing a gradient descent of the error function. That is:

SAWE o« —— (3-2)

The first simplification is to notice that the derivative of a sum is the sum of the derivatives
and, hence, the effects of each pattern in the training set can be observed independently:

3E BEp

-) ' 3-
aWL > oWl ¢
n p n

To calculate these partial gradients, then, the error function must be represented as a func-
tion of the Wji's. To do this, first define the input to the jth node in layer £, which is a weighted
sum of the outputs of the previous layer, to be NETJ?:

NET{ =5 Off«WL . (3-4)
i

Furthermore, the activation function which relates the output of a node to its input will be
referred to as f(). In order to calculate the gradient, this must be a differentiable function
[6f()/8NET = f'()]. With this notation, the gradient can be calculated by repeatedly applying the
chain rule. First, for weights in the output layer (layer L):

L
ok,)5 BNETj

T =t : (3-5)
oWk oNETL awl

11

From Equation (3-4), the second term can be calculated as a\’ETJL/c')WL O, L-1. For notational
convenience, define 61- dE,/oN ETL [the first term in Equation (3-5)], so that:

aE LAL-I
=¢6L0] : 3-6
aWL j (3-6)
Additional application of the chain rule shows that 6J.L s
dE dE a0k
61- = E = P * ! 5 (3-7)

! NETH 50 oNETE

Using the fact that Ojl- = f(I\'ETjL) and the definition of the error function in Equation (3-1), this
equation simplifies to:

1
L - L_T (NETL -

Finally, substituting this result back into the equation for calculating Aijli- (3-2) yields:

ok,

L
BWJ.i

= 5J.L * ojL-l = (ojL -Tj)# f’(NETjL) sobl . (3-9)

This computes the gradient of the error function with respect to weights in the output layer.
Calculating the gradient for weights in the previous layers, however, is a bit more complicated.
Again, the chain rule shows that:

L-1
aEp aEp aNETj
1 o L-1) (10
aWh1 GNET! oWk
Just as in the case of weights in the output layer, the second term is:
ONET|!
= OiL-2 . (3-11)
aw.L.-l

Consistent with the earlier definition of 6L = 9E /aNETL the first term in Equation (3-10) is
(’SL'] =oE /c')NETL I, Thus, Equation (3-10) can be written as

=sl-lxo2 . ' (3-12)

Note the similarity between this equation and Equation (3-6). The difference is that here,
because the outputs of the nodes in this layer do not appear explicitly in the error function, cal-
culating 6"' requires further application of the chain rule. Doing this yields:

L-1 L
3E,) 30! ONET, 3E,

8= = * = . «f(NET-h) . (3-13)
ONET/-! 9ot oNETH! 7 80} dNETL

12

Again, it follows from Equation (3-4) that:

INETL .

F = ij . (3-]4)
J

Finally, because aEp/aNET}(— = 6};, Equation (3-13) thus simplifies to:

5J.L-l =3 wh.ak * f’(NETjL") . (3-15)
k

This is a recursive algorithm in that it defines a way to calculate &% = aEp/aNET (referred to as
the & signal) at any node; simply take a weighted sum of the & signals of all nodes in the next
layer and multiply by the derivative of the activation function. Once the 8¢ is calculated accord-
ing to this algorithm for all of the nodes in the network, the AijQi is found to be simply:

ok,
~Ap W o« ——=¢8f+ O (3-16)
)i 2] 1
dW.:
)i
where the negative sign is to emphasize that it is the descent and not ascent of the error function
that is to be performed. The derivation is summarized in Table 3-1.

The keys to this result are its simplicity and its generality. No matter how many layers are in
the network or how many nodes are in each layer, this gives a simple algorithm for adjusting
every single weight so that the error at the output of the network is reduced. The steps in per-
forming the algorithm would then be as follows:

(1) Apply the first training vector to the inputs of the network.

(2) Calculate the 8’s associated with the nodes in the output layer according to
Equation (3-8):
5} = (OjL—Tj) * f’(NETjL) . (3-17)
(3) Use these delta values to calculate the delta values of nodes in the previous
layer according to Equation (3-15):
L-1 - L , L-1 -
6j = Z ij * f(NETj) . (3-18)

(4) Continue calculating the §’s for previous layers of the network in this way
until 6 signals have been calculated for all of the nodes in the network.

(5) Calculate the weight change for this particular input vector according to:
dE

AW o i 3 LT (3-19)
awj!li

(6) Repeat this procedure for each pattern vector in the training set.

13

TABLE 3-1

Summary of Back-Propagation Derivation

s
J
I N—

2
9E, [JE,] . [aNETj }
Tl 7 7
aWj; ONET; aWj;

JE 30!
P i . ol-1]
90; INET; !
JE, INET}*!)
(2 T ")* PNETH s oo
k ONET 1 90; P
0+1 2+] s [2-1
[(%6,(- Wi)* f(NETj)] N (o]

Thus:

6Ep 0y el
——7°% * O
aW;;

where

JE

941 041 9, & p
s s+l « wi\| « pNETY) 2
8; [(Ek; k kj)] I oNET]

(7) Update all of the weights in the network by an amount equal to:

9k,

AWE= S

P
To accelerate performance, the algorithm is often modified so that the weights are adjusted

after each training vector application. Because each vector application only yields partial informa-
tion regarding the gradient of the error function, this method of weight adjustment is inherently
inaccurate. To compensate for the limited amount of information available from the application

_ 9 n
=1 S aWE . (3-20)
ji P

14

of just one vector, the weight update will take into account the weight adjustment done during
the application of the previous vector. In this case, steps (6) and (7) would be replaced by:

(6) Update all of the weights in the network according to:
AWQ(p) = prj% +a* ij%(p - . (3-21)
(7) Repeat this procedure for each pattern vector in the training set.

The idea is to change each weight in the direction specified by the present state of the net-
work, but influenced by the direction that the weight was changed when the last vector was being
applied. The influence of the previous weight change is determined by the constant a.

B. VECTOR SPACE INTERPRETATION

In order to develop an intuitive understanding of how a back-propagation network repre-
sents a problem, consider the pattern classification application discussed in Section A. A good
example would be a one-layer network with two inputs and one output. If the two-dimensional
input space is mapped to the x-y Cartesian plane and the output of the network is mapped to
the z dimension, then a geometric picture of network operation emerges. Because all inputs are
limited to the range between 0 and 1, as discussed earlier, the domain of the mapping is a square
of unit area in the first quadrant. Referring to the inputs O0 and O0 as x and y, respectively, the
value of the network output for any input x and y is f(x #* W00+ y * WOI) [where f() is the activa-
tion function of the node as discussed in Section A above]. An interesting contour to examine is
the intersection of the z = 0.5 plane and the network output mapped into input space as described
above. The equation for this contour is the line x * Wl +y » Wl 0, with z=0.5. When pro-
jected into the x-y plane, this is a line with slope —(WOO/W) Fxgure 3-3 shows an example of
the mapping that was just described and the intersection of this function with the z = 0.5 plane.

Returning to the pattern classification problem that was discussed in Section 1, this network
should be thought of as dividing the input space into two half-spaces for which the output of the
one node would be greater than 0.5 in one half-space, and less than 0.5 in the other half-space.
The value of the network output for any point in input space depends upon which half-space the
point is in, how far the point is from the 0.5 dividing line, and the magnitude of W(’)l and W(‘)O'
The magnitudes of the weights determine the steepness of the “step,” while the relative values of
the two weights determine the orientation of the “step.”

Figure 3-3 shows an example where the dividing line does not pass through the origin. In
order to allow this possibility, an offset is added to the activation function. This offset can be
implemented as a weight to a fixed third input with a value of 1.0. The equation for the dividing
line is then x = Wl +y=* W01+ 1.0 = W] 2- 0. This is now the equation for a line with slope of
—(WOO/W l) and an intercept of -(W} 2/W p)- The advantage of implementing the threshold as an
extra node is that its weight value can be modified in the same way as any other weights in the
network. Thus, the threshold of each node can be trained without changing the basic back-
propagation algorithm. In all networks in the rest of this report, it will be assumed that each
layer (except for the output layer) has an extra dummy node with an output fixed at 1.0 which
allows the nodes in the next layer to establish nonzero thresholds.

15

=
Ry
R
RRHRHose

RN
RRRTHHHw
R R
TR
Sy \ W\ Ly
AR
R

R

\ .

Im\\\ 1 Y
R
RN

: ﬂ\‘\ N \
s N
N >

T iH itk

W
N
S
R \\\\ IR
s
N ::\‘ $\
X

102480-6

Figure 3-3. Activation function mapped into 2-dimensional input space.

Building on this geometric interpretation of a simple one-layer, one-node two-input network,
a one-layer two-input network with more than one node would have several dividing lines in
input space, one associated with each node. Such a network could be used for some pattern clas-
sification problems; however, a network in which each output can divide input space into half
planes is useful in defining only the simplest of regions and is not even capable of defining
regions as simple as those shown previously in Figures 2-2 and 2-3.

In order to define more complex regions, another layer must be added to the network. The
effect is that the second layer can form combinations of half planes. The types of regions that the
network can map out in input space are now greatly expanded. The basic principle of examining
the 0.5 “dividing line” remains. The nodes in the first layer still define these smooth steps in
input space that can be represented by the dividing line, and a measure of how steep the step is.
A node in the second layer maps out a function that is dependent on a weighted sum of these
smooth steps. As the weights become large, the smoorh steps become steep steps and in the limit,
the dividing line represents the transition from the output being 1 and the output being 0. In this
limit, the node in the second layer will be able to define any convex polygon region in input
space by forming a weighted sum of these dividing lines. In the practical case of smaller weights, . .
and smooth steps in input space, a 2-layer node will be capable of defining a much broader class
of convex regions in the same fashion.

16

Similarly, a three-layer net expands even further the types of regions that can be represented
in input space. As a two-layer network can form convex regions in input space, a three-layer net
forms combinations of convex regions. With such a net, regions which are connected or uncon-
nected, convex or nonconvex, can be created. Such a network is capable of representing a very
broad class of, if not all possible, regions.

Adding more inputs to the network expands the dimensionality of the input space making
pictures impossible, but the geometric principles remain. In n-dimensional input space, a one-
layer network defines n - 1 dimension hyperplanes that divide the space into two half-spaces. The
orientation of the hyperplanes is determined by the relative values of the weights in the network,
and the steepness of the division is determined by the absolute magnitude of the weights. Sim-
ilarly, a two-layer network forms combinations of half-spaces, and a node in the second layer of
a two-layer network can define any n-dimensional convex region in input space. Finally, any
arbitrary n-dimensional regions can be represented by an n-input three-layer network.

The way that back-propagation networks perform pattern classification can thus be viewed
as choosing weight patterns that define hyperplanes in input space, thereby defining the correct
regions for the pattern classification problem. It should be clear that in order to construct convex
regions a two-layer network is required. It should also be apparent that a minimum number of
nodes also are required in the first layer because first-layer nodes can only represent one step in
input space and there is no way that the output nodes could use only one half-plane separation
to define a closed region like a square.

17

4. ARCHITECTURAL OVERVIEW OF DESIGN

With an understanding of the back-propagation algorithm and the problems it can solve, it
is possible to consider the implementation of the algorithm in dedicated custom hardware. Al-
though specific circuit designs will not be discussed at this point, it is important to define the
major blocks that will be required in the implementation and consider the implementation op-
tions. This discussion will provide questions, rather than answers, to be addressed by the simula-
tion results that are presented in Section 5. After the basic architecture has been proposed here,
the performance of the algorithm will be evaluated in the presence of approximations and other
artifacts that will be introduced by the implementation. Once this is done, specific circuits that
meet the restrictions revealed by the simulations will be discussed.

It is important to define the major design constraints before defining the architecture. The
first design constraint and the most significant is the technology that is to be used. Although
there have been proposals in the literature to use many more exotic technologies such as CCD
arrays [Agranat, 87] [Chiang, 87] [Sage, 86] and optics [Abu-Mostafa, 87] to implement neural
network structures (some of these will be discussed in Section 7), the goal of this project is to
use a technology that is readily available, inexpensive, and well understood. Additionally, this
project is a part of a larger project, the goal of which is to implement large-scale artificial neural
architectures in wafer-scale VLSI. For all these reasons, this design is to be implemented in a
standard digital CMOS VLSI process technology as available through the MOSIS foundry. Thus,
all circuits considered here will be implementable in such a technology.

Within this technology constraint, the possible architectures range from a fully digital sys-
tolic array processor to a fully analog circuit in which the physics of the MOS devices is used to
implement the various operations required by the back-propagation algorithm. Each of these ap-
proaches has its strengths and weaknesses, and many of them will be discussed in much greater
detail in Section 8 which attempts to compare these various implementation strategies. The goal
of this design project, however, is to attempt to use the physics of the devices wherever possible
to implement the computations. For this reason, a fully digital approach will be used mainly as a
reference for comparison with the other circuit approaches. Additionally, it is important that the
final design be flexible enough and well enough controlled to make it useful in the investigation
of how the back-propagation algorithm works on various problems.

The first block that must be constructed is the basic multi-layered perceptron network that
will be used to propagate the input signals forward. This network is composed of blocks that
form the weighted sum of many input signals and produce an output after passing through an
“activation” function. It is important that the weights are easily modifiable if the network is to
learn new weight patterns, and it would be attractive if the network could be initialized from the
external world. '

The simplest way to implement such a block is with resistors, switches, and operational
amplifiers. Such a circuit is shown in Figure 4-1. In such an implementation, the signals are
analog voltages that produce currents through the weighting resistors. The size of the resistors

19

Figure 4-1. Simple Op-Amp and resistor circuit.

determines the strength of the weight in this circuit but the computation in the network is per-
formed in continuous analog signals. In a CMOS process, resistors with programmable weights
are not readily available but there are several transistor circuits that closely approximate the re-
sistor’s characteristics. Although the specifics of the possible circuit implementation will be dis-
cussed in Section 6, the transistor circuits that can be used as programmable resistors can
basically be divided into two categories.

The first category of circuits is that in which the value of the resistive connection is digitally
controlled. These circuits work on the principle of parallel resistor networks, with each “resistor”
circuit having a standard resistance. The value of the weight is determined by how many of the
resistor circuits are connected in parallel at a given connection. In these circuits there is generally
a digital register associated with each weight and the number stored in that register controls the
number of parallel devices at that connection. The advantages of this type of circuit are that it is
easy to determine what all the weights in the network are at any time by simply reading these
digital registers, and it is easy to set all the weights to a certain weight pattern simply by writing
to all the registers. The disadvantage of encoding the weights digitally is that the weight resolu-
tion is limited by the size of the registers, and increasing the size of the registers quickly leads to
unacceptably large circuits.

The second category of circuits has weights that are controlled by continuous analog signals.
In these circuits the resistance is changed by changing the operating region of the circuit that is
used to implement the resistor. The obvious advantage of this type of circuitry is that it appears
to eliminate the resolution issue that is introduced by digital quantization. Additionally, since
small “resistors” don’t require many devices operating in parallel, but rather one device operating
in a different region, these circuits tend to be significantly smaller than the digital circuits. The
disadvantage of such circuits, however, is that it is more difficult to set the weights in the net-
work by writing a stored analog value and it is also quite difficult to read the state at any one
point in time. This circuitry is further complicated by the fact that the circuits that control the

values of the weights store the analog signal in the form of charge. This tends to be a dynamic
storage in the sense that a value cannot be held indefinitely when the circuitry is implemented in
standard CMOS circuitry, so the system must constantly refresh these values and bring them
back to their desired levels.

Although it is certainly not clear which of these types of circuits is best since they both seem
to have drawbacks, the digitally encoded weighting scheme will be proposed for use in this
design. Although the fully analog design approach yields more compact designs (as will be dis-
cussed in Section 8), the complex nature of storing analog signals in CMOS technology might
compromise the reliability of a back-propagation system.

Choice of word length is the most critical design decision arising from the use of digitally
encoded weights. How many bits must the digital register contain in order to represent the
weights with sufficient precision to implement the back-propagation algorithm, and how can a
circuit be constructed that will have the required precision? This is the principal question to be
addressed extensively in Section 5 on simulations and in later sections.

The other architectural issue requiring careful consideration is the technique for implement-
ing the back-propagation learning algorithm. The issue is how to generate the signals for each
weight in the network that indicate how to change its value during learning. The learning a]go-
rithm requires two signals to be multiplied together in order to determine how to change W
These signals, as shown m Equation (3-19), are O Z-1 (the output of the node from which thc
weight emanates) and 6 (the 6 signal associated w1th the node which the weight is entering). The
key observation is that the o signals in one layer are found by simply taking the weighted sum of
the & signals in the next layer and multiplying this weighted sum by f’(OjQ). What emerges is a
network that is propagating the error signal “backward” from the output of the network. Addi-
tionally, it is important to notice that the weights used for propagating the error signal backward
have the same value as those that were used to propagate the original signal forward.

Now it is possible to understand the basic structure of the back-propagation architecture as
presented in Figure 4-2 which shows one layer of a back-propagation network. This structure is
modular in the sense that these modules can be connected directly together to form a multi-layer
network. The basic structure as shown in Figure 4-2 contains a forward network that is propa-
gating the signals in from the left and down to the bottom of the figure (drawn with thin lines),
and a backward network intertwined with the forward structure that is propagating the error sig-
nals back from the outputs at the bottom and out to the left of the figure (drawn with thick
lines). The nodes of this layer are at the bottom of the picture, and the weights are arranged in
an array with the columns containing all the forward weights that go to a particular node.
Equivalently, a row contains all the weights that go from a particular input. At each location in
the weight array is a weight structure that is composed of three sub-blocks. Taking advantage of
the fact that the corresponding weights in the forward and backward networks always have the
same value, the weight structure has one digital register to establish the size of the weight, and
two other blocks — one presents this weight to the forward network, the other to the backward
network.

21

Y

o -
] B |

i i FORWARD
— ‘
WEIGHT [weiGHT [)
'l
0 CONTROL CONTROL
BACKWARD —= BACKWARD
WEIGHT WEIGHT
£
8 11 | - 11 I |
n-1 i
21 |
o i
FORWARD FORWARD
WEIGHT [> WEIGHT _"_.
'l
0 CONTROL CONTROL
BACKWARD . BACKWARD
WEIGHT WEIGHT
21
5 (| l I 11 | ||
n
+ E + -
2 °o! ? 011
8o 8y

Figure 4-2. Block architecture of design.

22

102480-8

Another important concept behind this architecture is that all the signals required by the
back-propagation algorithm in order to perform learning are always available at the appropriate
weight structures in the form of analog signals. The signal that is feeding WJ in the forward
direction is O;’-!, and the signal that is fed through this weight in the backward direction is 6
Thus, the calculauon required to determine the weight change involves only signals that are
already available at the weight structure.

A node in this structure will be constructed from an amplifier that sums the input signals
until they exceed a certain threshold, after which the amplifier saturates. This will produce the
desired activation-function characteristic at the nodes. The back-propagation algorithm specifies
that the & signal must be multiplied by the derivative of this activation function, evaluated at the
operating point of the amplifier. This multiplication is represented by a box in the block diagram
labeled f'() but, because the activation function may not be an analytic function, an important
question to be addressed in the simulations is how closely the output of this box must match the
derivative of the activation function of the amplifier in the network.

23

5. SIMULATIONS

The general architecture proposed in Section 4 raised the critical questions of weight resolu-
tion and accuracy of approximation of the derivative of the activation function. To investigate
the influence of these factors on the back-propagation algorithm performance, a simulation pro-
gram, originally written by William Huang of Lincoln Laboratory, was rewritten to simulate
the effects of the implementational artifacts. The simulator was written in C and run on a
VAX 11780 and the outline of these simulations and the results will be presented in this section.
A more detailed description of these simulations is presented in Appendix A.

The goal of these simulations is to determine how certain artifacts influence the performance
of these networks on prototypical problems and to determine when these effects become un-
acceptably severe. Thus, the problems that were simulated were chosen using two basic criteria:

(a) They were simple enough that the effects which were being examined could be
observed and understood.

(b) They were thought to contain the essential features of more complicated and
intrinsically interesting problems.

A. PROBLEM DEFINITION

Within the broad class of pattern classification which characterizes all of the simulated prob-
lems, there are finer distinctions to be made. The first distinction among pattern classification
problems is between those that have binary (0 or 1) input signals, and those that have continuous
(any value between 0 and 1) input signals. The distinction between<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>